Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ZERO(active(X)) → ZERO(X)
ADD(active(X1), X2) → ADD(X1, X2)
ACTIVE(prod(s(X), Y)) → ADD(Y, prod(X, Y))
MARK(p(X)) → ACTIVE(p(mark(X)))
ADD(X1, active(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
ACTIVE(p(s(X))) → MARK(X)
MARK(fact(X)) → FACT(mark(X))
MARK(true) → ACTIVE(true)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
FACT(active(X)) → FACT(X)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
ACTIVE(prod(s(X), Y)) → PROD(X, Y)
MARK(p(X)) → MARK(X)
PROD(X1, active(X2)) → PROD(X1, X2)
MARK(fact(X)) → ACTIVE(fact(mark(X)))
MARK(zero(X)) → ZERO(mark(X))
MARK(add(X1, X2)) → ADD(mark(X1), mark(X2))
S(active(X)) → S(X)
MARK(false) → ACTIVE(false)
P(active(X)) → P(X)
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
ACTIVE(fact(X)) → P(X)
MARK(zero(X)) → MARK(X)
ACTIVE(zero(0)) → MARK(true)
MARK(prod(X1, X2)) → MARK(X1)
ACTIVE(add(s(X), Y)) → ADD(X, Y)
ACTIVE(zero(s(X))) → MARK(false)
MARK(s(X)) → MARK(X)
PROD(X1, mark(X2)) → PROD(X1, X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
ACTIVE(add(s(X), Y)) → S(add(X, Y))
MARK(add(X1, X2)) → MARK(X2)
P(mark(X)) → P(X)
MARK(fact(X)) → MARK(X)
FACT(mark(X)) → FACT(X)
PROD(mark(X1), X2) → PROD(X1, X2)
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
ADD(X1, mark(X2)) → ADD(X1, X2)
PROD(active(X1), X2) → PROD(X1, X2)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(fact(X)) → FACT(p(X))
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
ACTIVE(fact(X)) → PROD(X, fact(p(X)))
ACTIVE(prod(0, X)) → MARK(0)
MARK(prod(X1, X2)) → MARK(X2)
S(mark(X)) → S(X)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
MARK(s(X)) → S(mark(X))
MARK(if(X1, X2, X3)) → IF(mark(X1), X2, X3)
ACTIVE(fact(X)) → ZERO(X)
MARK(zero(X)) → ACTIVE(zero(mark(X)))
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
MARK(p(X)) → P(mark(X))
ACTIVE(fact(X)) → S(0)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
MARK(0) → ACTIVE(0)
ZERO(mark(X)) → ZERO(X)
ACTIVE(fact(X)) → IF(zero(X), s(0), prod(X, fact(p(X))))
ACTIVE(add(0, X)) → MARK(X)
MARK(prod(X1, X2)) → PROD(mark(X1), mark(X2))
ACTIVE(if(true, X, Y)) → MARK(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ZERO(active(X)) → ZERO(X)
ADD(active(X1), X2) → ADD(X1, X2)
ACTIVE(prod(s(X), Y)) → ADD(Y, prod(X, Y))
MARK(p(X)) → ACTIVE(p(mark(X)))
ADD(X1, active(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
ACTIVE(p(s(X))) → MARK(X)
MARK(fact(X)) → FACT(mark(X))
MARK(true) → ACTIVE(true)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
FACT(active(X)) → FACT(X)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
ACTIVE(prod(s(X), Y)) → PROD(X, Y)
MARK(p(X)) → MARK(X)
PROD(X1, active(X2)) → PROD(X1, X2)
MARK(fact(X)) → ACTIVE(fact(mark(X)))
MARK(zero(X)) → ZERO(mark(X))
MARK(add(X1, X2)) → ADD(mark(X1), mark(X2))
S(active(X)) → S(X)
MARK(false) → ACTIVE(false)
P(active(X)) → P(X)
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
ACTIVE(fact(X)) → P(X)
MARK(zero(X)) → MARK(X)
ACTIVE(zero(0)) → MARK(true)
MARK(prod(X1, X2)) → MARK(X1)
ACTIVE(add(s(X), Y)) → ADD(X, Y)
ACTIVE(zero(s(X))) → MARK(false)
MARK(s(X)) → MARK(X)
PROD(X1, mark(X2)) → PROD(X1, X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
ACTIVE(add(s(X), Y)) → S(add(X, Y))
MARK(add(X1, X2)) → MARK(X2)
P(mark(X)) → P(X)
MARK(fact(X)) → MARK(X)
FACT(mark(X)) → FACT(X)
PROD(mark(X1), X2) → PROD(X1, X2)
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
ADD(X1, mark(X2)) → ADD(X1, X2)
PROD(active(X1), X2) → PROD(X1, X2)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(fact(X)) → FACT(p(X))
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
ACTIVE(fact(X)) → PROD(X, fact(p(X)))
ACTIVE(prod(0, X)) → MARK(0)
MARK(prod(X1, X2)) → MARK(X2)
S(mark(X)) → S(X)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
MARK(s(X)) → S(mark(X))
MARK(if(X1, X2, X3)) → IF(mark(X1), X2, X3)
ACTIVE(fact(X)) → ZERO(X)
MARK(zero(X)) → ACTIVE(zero(mark(X)))
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
MARK(p(X)) → P(mark(X))
ACTIVE(fact(X)) → S(0)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
MARK(0) → ACTIVE(0)
ZERO(mark(X)) → ZERO(X)
ACTIVE(fact(X)) → IF(zero(X), s(0), prod(X, fact(p(X))))
ACTIVE(add(0, X)) → MARK(X)
MARK(prod(X1, X2)) → PROD(mark(X1), mark(X2))
ACTIVE(if(true, X, Y)) → MARK(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 8 SCCs with 23 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(active(X1), X2) → ADD(X1, X2)
ADD(X1, active(X2)) → ADD(X1, X2)
ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ADD(active(X1), X2) → ADD(X1, X2)
ADD(X1, active(X2)) → ADD(X1, X2)
ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1 + (2)x_1   
POL(mark(x1)) = 1 + (4)x_1   
POL(ADD(x1, x2)) = (2)x_1 + x_2   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(active(X)) → P(X)
P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


P(active(X)) → P(X)
P(mark(X)) → P(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + x_1   
POL(P(x1)) = (4)x_1   
POL(mark(x1)) = 4 + (4)x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROD(X1, mark(X2)) → PROD(X1, X2)
PROD(mark(X1), X2) → PROD(X1, X2)
PROD(X1, active(X2)) → PROD(X1, X2)
PROD(active(X1), X2) → PROD(X1, X2)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PROD(X1, mark(X2)) → PROD(X1, X2)
PROD(mark(X1), X2) → PROD(X1, X2)
PROD(X1, active(X2)) → PROD(X1, X2)
PROD(active(X1), X2) → PROD(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (2)x_1   
POL(mark(x1)) = 4 + (2)x_1   
POL(PROD(x1, x2)) = (4)x_1 + (4)x_2   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + x_1   
POL(mark(x1)) = 4 + (4)x_1   
POL(S(x1)) = (4)x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZERO(active(X)) → ZERO(X)
ZERO(mark(X)) → ZERO(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ZERO(active(X)) → ZERO(X)
ZERO(mark(X)) → ZERO(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(ZERO(x1)) = (4)x_1   
POL(mark(x1)) = 4 + x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 3 + (4)x_1   
POL(mark(x1)) = 4 + (4)x_1   
POL(IF(x1, x2, x3)) = (4)x_1 + x_2 + (4)x_3   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FACT(active(X)) → FACT(X)
FACT(mark(X)) → FACT(X)

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


FACT(active(X)) → FACT(X)
FACT(mark(X)) → FACT(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(FACT(x1)) = (4)x_1   
POL(mark(x1)) = 4 + x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(prod(X1, X2)) → MARK(X2)
MARK(prod(X1, X2)) → MARK(X1)
MARK(zero(X)) → ACTIVE(zero(mark(X)))
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(fact(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
MARK(add(X1, X2)) → MARK(X1)
ACTIVE(p(s(X))) → MARK(X)
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(p(X)) → MARK(X)
MARK(zero(X)) → MARK(X)
ACTIVE(add(0, X)) → MARK(X)
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(fact(X)) → ACTIVE(fact(mark(X)))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(prod(X1, X2)) → MARK(X2)
MARK(prod(X1, X2)) → MARK(X1)
MARK(zero(X)) → ACTIVE(zero(mark(X)))
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(fact(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
MARK(add(X1, X2)) → MARK(X1)
ACTIVE(p(s(X))) → MARK(X)
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(p(X)) → MARK(X)
MARK(zero(X)) → MARK(X)
ACTIVE(add(0, X)) → MARK(X)
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(fact(X)) → ACTIVE(fact(mark(X)))
Used ordering: Polynomial interpretation [25,35]:

POL(zero(x1)) = 1   
POL(true) = 0   
POL(mark(x1)) = 0   
POL(p(x1)) = 1   
POL(0) = 0   
POL(ACTIVE(x1)) = (4)x_1   
POL(prod(x1, x2)) = 1   
POL(active(x1)) = 3   
POL(add(x1, x2)) = 1   
POL(MARK(x1)) = 4   
POL(if(x1, x2, x3)) = 1   
POL(false) = 3   
POL(s(x1)) = 0   
POL(fact(x1)) = 1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
fact(active(X)) → fact(X)
fact(mark(X)) → fact(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
add(X1, mark(X2)) → add(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(prod(X1, X2)) → MARK(X2)
MARK(prod(X1, X2)) → MARK(X1)
MARK(zero(X)) → ACTIVE(zero(mark(X)))
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(fact(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
ACTIVE(p(s(X))) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
MARK(zero(X)) → MARK(X)
MARK(p(X)) → MARK(X)
ACTIVE(add(0, X)) → MARK(X)
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(fact(X)) → ACTIVE(fact(mark(X)))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(zero(X)) → ACTIVE(zero(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(prod(X1, X2)) → MARK(X2)
MARK(prod(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(fact(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
ACTIVE(p(s(X))) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
MARK(zero(X)) → MARK(X)
MARK(p(X)) → MARK(X)
ACTIVE(add(0, X)) → MARK(X)
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(fact(X)) → ACTIVE(fact(mark(X)))
Used ordering: Polynomial interpretation [25,35]:

POL(zero(x1)) = 0   
POL(true) = 2   
POL(mark(x1)) = 2   
POL(p(x1)) = 2   
POL(0) = 0   
POL(ACTIVE(x1)) = (2)x_1   
POL(prod(x1, x2)) = 2   
POL(active(x1)) = 4   
POL(add(x1, x2)) = 2   
POL(MARK(x1)) = 4   
POL(if(x1, x2, x3)) = 2   
POL(false) = 0   
POL(s(x1)) = (2)x_1   
POL(fact(x1)) = 2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

prod(mark(X1), X2) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
add(X1, mark(X2)) → add(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)
p(active(X)) → p(X)
p(mark(X)) → p(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
fact(active(X)) → fact(X)
fact(mark(X)) → fact(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(prod(X1, X2)) → MARK(X2)
MARK(prod(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X2)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(fact(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), X2, X3))
ACTIVE(prod(s(X), Y)) → MARK(add(Y, prod(X, Y)))
ACTIVE(fact(X)) → MARK(if(zero(X), s(0), prod(X, fact(p(X)))))
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
ACTIVE(p(s(X))) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
MARK(prod(X1, X2)) → ACTIVE(prod(mark(X1), mark(X2)))
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(p(X)) → MARK(X)
MARK(zero(X)) → MARK(X)
ACTIVE(add(0, X)) → MARK(X)
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(fact(X)) → ACTIVE(fact(mark(X)))

The TRS R consists of the following rules:

active(fact(X)) → mark(if(zero(X), s(0), prod(X, fact(p(X)))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(prod(0, X)) → mark(0)
active(prod(s(X), Y)) → mark(add(Y, prod(X, Y)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(zero(0)) → mark(true)
active(zero(s(X))) → mark(false)
active(p(s(X))) → mark(X)
mark(fact(X)) → active(fact(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), X2, X3))
mark(zero(X)) → active(zero(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(prod(X1, X2)) → active(prod(mark(X1), mark(X2)))
mark(p(X)) → active(p(mark(X)))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
mark(true) → active(true)
mark(false) → active(false)
fact(mark(X)) → fact(X)
fact(active(X)) → fact(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
zero(mark(X)) → zero(X)
zero(active(X)) → zero(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
prod(mark(X1), X2) → prod(X1, X2)
prod(X1, mark(X2)) → prod(X1, X2)
prod(active(X1), X2) → prod(X1, X2)
prod(X1, active(X2)) → prod(X1, X2)
p(mark(X)) → p(X)
p(active(X)) → p(X)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.